Observing Gravitational Waves from the Next Nearby Core-Collapse Supernova Sarah Gossan^[1], Christian Ott^[1], Ernazar Abdikamalov^[1], Alexandra DeMaio^[2,1], Erik Katsavounidis^[3] [1] California Institute of Technology, [2] Rutgers, [3] Massachusetts Institute of Technology TAUP 2013, 12th September 2013 ## Prospects for Nearby Core-Collapse Supernovae - * Important galaxies for CCSN rate in Local Group (CCSNe/100yr) - * Milky Way (0.5-2.5) - * LMC (0.1-0.5) - * NGC6822 (~0.04) - * M31 (0.2-1.2) - * M82 @ 3.52Mpc with (3.0-13.0) CCSNe/100yr - CCSNe most likely to be ~10kpc from galactic center. #### The Advanced Detector Network ## Challenges in Detecting CCSNe - * Low event rate for aLIGO. - * Duty cycle not optimal. - * Non-Gaussian and nonstationary detector noise. - * Can't predict exact GW signal expected robustly. | Detector | S5y1 (Nov 05-Nov 06) Duty Cycle | |----------|---------------------------------| | H1 | 72.8% | | L1 | 59.3% | Abbott+09, Phys. Rev. D80:102001 #### The Excess-Power Search - * Uses time-frequency signal content. - * Optimal for unmodelled signals. - * Does data contains excesspower than expected from noise? - * Increase accuracy by reducing `on-source' region (OSR). - * X-Pipeline (Sutton+09) and Coherent WaveBurst (Klimenko+08). ## Utilizing Multi-Messenger Observations #### GW Searches for CCSNe so far #### A Joint GW- ν Search for CCSNe ### Detecting CCSNe with aLIGO - * Unlikely to detect average CCSNe beyond Milky Way/LMC/SMC. - Non-detections make statements about progenitors. - Sub-threshold signals in GW and neutrinos combine to increase observational evidence. ## Utilizing sub-threshold GW/ ν signals * GRB051103. * Estimate noise background. * Exclude GW emission models. * Improve neutrino search sensitivity - require GW coincidence. #### Parameter Estimation for CCSNe * Want astrophysically interesting information from observations. * Don't have exact analytical expressions - Principal Component Analysis (PCA) captures dominant signal features. - * Reconstruct low SNR signals. - Röver+09. * Determine CCSN explosion mechanism. Logue+12. ### PCA and Bayesian Inference - * PCA create basis sets encompassing `principal components' of simulation waveform space. - * Generate PCs from time-domain, linearly polarized waveforms. - * Bayesian Inference with Nested Sampling algorithm. - * PE: Estimate PC coefficients and reconstruct injected signals using PCs.. - * Model Selection: calculate evidence for each model which PC set is most ----- likely given observed data? # Inferring the Differential Rotation of CCSN Progenitors Ernazar Abdikamalov, Sarah Gossan, Alexandra DeMaio, Christian Ott - * Characterize progenitor rotation for rotating corecollapse sources. - * Optimal-orientation and source at 10kpc Only A and $\beta_{ic,b}$ unknown. - * Two approaches - * Model selection. - * Numerical template bank. #### Determining A with Model Selection # A Numerical Template Bank - Matched Filtering #### Future Work - * Prepare for the first detection of GW from CCSNe! - * More collaboration between GW and ν working groups. - * Low-latency burst pipelines. - * Real-time signal analysis. - * Extend differential rotation analysis to additional physical progenitor parameters, e.g. different explosion mechanisms, equation of state. - * Inference analysis for both GW and ν signatures of CCSNe.